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Experimental determination of mechanical properties of unidirectionally reinforced composite materials 
(UCM) involves well-known difficulties due to the fact that materials in the form of tapes and braids have 
small transverse dimensions. Moreover, the behavior of UCM as structural members differs from that in 
independent tests. 

In this paper, we consider an approach that allows one to obtain information on the mechanical 
properties of a composite from experimental tests of structures made of this composite material (CM) [1-3]. 
The plane stress state of CM entering into a multilayer structure is studied. Examples of such structures are 
thin shells formed by winding or application of CM. However, certain difficulties arise here. They are due to 

"the fact that, when the elastic moduli are greatly different, the desired small quantities (for example, u12, 
E2, and G) change significantly with small variations of initial experimental data  [3]. Problems of processing 
experimental data for nonlinear elasticity are studied, the calculation results of test problems are analyzed, 
and conditions imposed on an experiment are formulated. 

1. We formulate the necessary relations obtained in [2]. We investigate objects such as thin multilayer 
plates and shells formed by application or winding of reinforced orthotropic layers. We relate the Cartesian 
coordinate system x 1, x 2 to a reinforced layer by directing the x I axis along the axis of orthotropy having 
maximum stiffness and the x 2 axis perpendicular to the x 1 axis in the plane of the layer (Fig. 1). 

The relationship between stresses g ~  and strains ~ in an arbitrary coordinate system ~71, :~2 obtained 
from the system x lx  2 by rotation about the x 3 axis in the plane of the tape for small strains is expressed in 
tensor form as 

~ = Al(~a~ + ~a~) + A3(Oa~ _ ~(~) + 2A2($a~ _ (1/2)~a~$0 ~ _ ( 1 / 2 ) h ~ o ~ p , )  (a, /3 = 1, 2). (1.t) 

Here ~a~ are the components of the metric tensor in the plane of a single tape; /~a~ is a special tensor which 
has components A n = 1, A 22 = - 1 ,  and A 12 -- A 21 = 0 in the coordinate system x 1, x2; b ~ and $ ~  are the 
components of the stress and strain tensors of the tape in the system $1 ~2; Ai = Ai(I1, I2, I3) are functions 
that characterize the elastic properties of the composite material, where i = 1, 2, and 3; and Ik are invariants 
of the form 

I1 = ~ + b,~azZ, Ia = ~ - h ~ Z ,  I2 = aa~g a~ - (1/2)(g~) 2 - ( t / 2 ) (~ , a~ ,~ )  2. (1.2) 

In the system x l x  2 the stresses (1.1) and invariants (1.2) assume the form 

a 11 = 2A1, cr 22 = 2A3, a 12 = 2A2e12; 

Below, 

Teregulov [2]. This made it possible to reduce the number of arguments of functions that characterize the 

(1.3) 

I1 = 2an,  I3 = 2e22, 12 = 2e~ 2. (1.4) 

we study materials whose longitudinal, transverse, and shearing stiffnesses differ greatly. 
An asymptotic analysis of constitutive relations (1.1) for materials of this class was performed by 
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Fig. 1 

stiffness of the nonlinear-elastic CM and to express these functions, with error 0(,72) compared with unity, in 
the form 

AI(/1, /3)  -~ Al1(11)[1 + A13(11)I3, A3(I1, 13) = A31(ll)I1 + A33(I3)13, A2(I2) = A2(I2). (1.5) 

Moreover, the elastic characteristics A13 and A31 are related by 

0A31 I1 q- A31 -- A13. (1.6) 
011 

2. Determination of Ai is based on processing of the results of experiments on tubular specimens 
(shells) formed by winding of a reinforced material at angles -1-~ with respect to the generatrix. This allows 
one to take into account the specific behavior of CM constituents in the composition and also to take into 
account indirectly the influence of technological factors on the CM properties (a similar approach was used, 
for example, in [4, 5] to determine the mechanical properties of a linear-elastic CM). Loading is performed by 
an internal pressure and an axial force. We assume that  the number  of layers is sufficiently large and, hence, 
the strain of the shell is axisymmetric [4]. 

As the ~:1 and ~2 axes, we choose the lines coinciding in direction with the meridian ~1 and the parallel 
:~2 of the shell of revolution. 

The tensors 5.ij and 0.ij are related by 

rll = 0 "11 COS 2~ _1_ 0.22 sin 2r + 0.12 sin 2T, 

5.22 m 0.11 sin2~ + 0.22 cos2~  _ 0.12 s in2T,  (2.1) 

5.12 = (1/2)(0.22 _ ~r11)sin 2~ + 0.12 cos 2T. 

We express (1.4) in terms of the strain characteristics of the shell: 

I1 = 2[~n cos 2~ + ~22 sin 2~], I3 = 2[~11 sin2~ + ~22 cos 2~], 12 = (1/2)[(~n - $22) sin 2~] 2. (2.2) 

Here we took into account that  ~12 = 0 because the shell's strain is axisymmetric. Using (1.3), (1.5), and 
(2.2), we express stresses (2.1) in the layer in terms of the strain characteristics of the shell ~11 and ~22, which 
are measured in an experiment.  Then,  we have 

5.11 --.= [A11(ll)Ii + A13(11)13](I + cos2~) 

+ [A31(I1)I1 + A33(I3)I3](1 - cos 2~2) + A2(I2)(ell - e22)sin 22~v, 
(2.3) 

5 .22 = [Al1(I1)I, + A13(I,)I3](I - cos 2~) 

+ [A31([I)I1 + A33(I3)I3](I + cos 2~) - A2(12)(~n - e22) sin 22~. 
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Next, we use the equations of equilibrium 

hb 11 = P/27rR, h~ 22 = qR, (2.4) 

where P is the external force acting along the axis of a cylindrical shell, q is the internal pressure in the shell, 
R is the radius of the middle surface of the shell, and h is the thickness of the shell. 

The problem of determining the elastic characteristics All (I1), A13 (I1), A31(I1), A33(I3), and A2(I2) 
from Eqs. (1.6), (2.3), and (2.4)is posed. 

To this end, we expand the Aij in series in certain systems of functions of the invariants Ik (k = 1, 
2, 3): 

N1 N2 N3 
A,,(I1) ~--~A~10~(I1), A13(I1) y]~ k k __ A3103(1,), = = A13r A31(I1) ~ k k 

k=0 k=0 k=0 

N4 Ns (2.5) 

A33(h) E k k = A33r A2(h )  k k = A2r (J2), J2 = 
k=0 k=0 

In calculations, the powers of the invariants I1, /3,  and J2 were used as the functions cJ  with Ark = N = 2 
or N = 3. This corresponds to an approximation of the function Aij by a quadratic or cubic parabola. Then, 
using relation (1.6), we express the A~3 in terms of the A3kl: 

A~3=( l+k)Asks ,  k = 0 , . . . , N .  (2.6) 

Equations (1.6), (2.3), and (2.4) can be written for each point of the loading trajectory P(() ,  q(~) 
(~ is the loading parameter). Substituting relations (2.5) and (2.6) into (2.3), we obtain two linear algebraic 
equations for the A/k 1 for each value of the loading parameter. 

The number of unknowns A/k 1 in the system of algebraic equations is defined by the order of 
approximation of the curves: n = 4(N + 1). 

The system of algebraic equations for the desired vector X = {A~ A~ A~ A~ "--} = 
{X 1, X 2, . . . ,  X n} is written in matrix form as 

B x  = C, (2.7) 

where B = B(2m,  n),  z = x(n) ,  and C = C(2m) (m is the number of measurements in the chosen 
experiments). 

When 2rn > n, the system is overdetermined. To solve it, we use the mean-square residual minimization 
method: 

052 
Oz = 0 '  5 ~ = ( B z  - C)  2. 

This leads to an algebraic system of equations of order n, which is written in matrix form as 

B l x  = C1. (2.8) 

Here B1 = B t B  and C1 = B t C  (B t is a transposed matrix). 
Theoretically, two experiments for different winding angles ~ are sufficient to determine the linear 

elastic characteristics A~ A~ A~ and A ~ 
In this case, we readily obtain an expression for the 4 x 4 matrix of resolvent system (2.7) in the form 

det BI I = k(/32 -/31)(1 -/31)(1 -/32)[tan22~21 - tan22~21, (2.9) 

/'(I) / T(1) = /(2)/1(2) where k is a numerical coefficient,/31 = "3 /~I corresponds to the first experiment,/32 ~3 / 1 corresponds 
to the second experiment, and ~I and c22 are the winding angles of a single tape for shells in the first and 
second experiments, respectively. 

From expression (2.9) it follows that system (2.7) is solvable if the following conditions are satisfied: 
/31 # 1, /32 # 1, /31 # /32, and ~1 + qO2 5;~ 7I"/2. In the general case of a nonlinear-elastic composite material, 
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derivation of degeneration conditions for matrix Bz is a difficult problem. 
Solution of system (2.7) for N > 0 involves difficulties due to the fact that  the elements in this system 

differ from one another by many orders. 
Therefore, in solution of system (2.7) we use normalization of columns by means of introduction of new 

unknowns X.  x = XZaz, . . . ,  X~. = XSas, . . . .  There are various approaches to choice of a , .  Here we assume 
I n  

that a,, = ~ [B~.I. Then, we introduce a new matrix B*,, = Bin]an in place of matrix B and normalize the 
i=1 

rows in (2.7): 
? l  

B * ' =  B*,,/Ti , C**= Ci/T,, 7i = ~ B*,, I. 
i=l 

After solving the system of equations B**X* = F**, we determine the vector X: 

X = 

When choosing shells for experiment, one should bear in mind that the winding angle plays a dominant 
role in determining the stiffness characteristics of shells [3, 4], as is seen from Fig. 2. Therefore, to determine 
more accurately the technical constants, one should choose shells in which winding angles differ greatly from 
one another. 

3. The proposed method and the program developed were tested using the inverse-problem scheme. 
For a certain fictitious material,  functions (1.5) were specified in explicit form and were used to calculate 
indications of force meters P and q and indications of strain gauges eza and e22 from the known relations. 

The thus-obtained experimental results were used as initial data  to reconstruct functions (1.5) (in the 
form of their approximations). This method permitted us to investigate the influence of various factors (a 
spread in experimental data  and an error in measuring the winding angle) on the accuracy of determining 
functions (1.5). 

Test examples were studied for a nonlinear-elastic material characterized by the constitutive law 

4All = BI (a / v /~+  e21 + b), 4A13 = vl2BI(1 + 2ell/al), 
(3.1) 

4A33 = B3(a/~/a 2 +e22 +b) ,  4A31 = vl2BI(1 +ell/al) ,  A 2 =  2B2(a/~r'~ +e122 +b) .  

Hence, when strains ell ,  e22, and el2 tend to zero, we have the following tangent stiffness characteristics: 

4Azl(0) = (1 + b)B1, 4A33(0) = (1 + b)B3, A2(O) = (1 + b)B2, 
(3.2) 

4All(0) = El / (1  - -  u 1 2 P ' 2 1 ) ,  4A33(0) = E2/(1 - -  V l 2 t J 2 1 ) ,  G12 = A2(0), 
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TABLE 1 

Experiment Winding angle -t-% ilk) ~(k) 
number deg ~11.m ~22,,~ 

30 
20 
5 

0.0005m 
0.0005m 
0.0005m 

0.0003m 
0.0002m 
0.0001m 

where E1 and E2 are the elastic moduli for longitudinal and transverse reinforcement, v12 and v21 are Poisson's 
ratios, and G12 is the shear modulus. 

The parameters B1,/33, and/32 appearing in (3.1) allow us to model both weak and strong material 
anisotropies. The following parameters were used for weak anisotropy: 

B I = 1 0 5 M P a ,  B 3 = 5 . 1 0 4 M P a ,  v12=0.1 ,  / 7 2 = 3 - 1 0 4 M P a ,  a = 1 0  -3, 3 1 = 2 " 1 0  -2 , b = 0 . 1 .  (3.3) 

Then, strain values in a single tape with winding angle qo(k) were specified. The loading number m 
was taken as the loading parameter  ~: 

ll ,m 22,rn �9 " ", 

Here e~ko ) and .(k) "20 << 1 were taken arbitrarily. The value of e (k) 12,m was calculated from the symmetry condition 
for the strain deformation of the shell 

~(k)12,m = (1/2)(e~k2!m -e~!,,,) sin 2~ + e (k)12,,. cos2~ = 0. 

Expressions similar to (2.1) were used to determine ell and e22 and also indications of strain gauges. Stresses 
in the tape were calculated by expressions (1.3), (1.5), and (3.1), and stresses in the shell with the given 
winding angle were calculated by relations (2.1). Finally, the external loads p(k) and q(k) for given values of 
h (k) and R (k) were determined by relations (2.4). The experimental results for m = 10 are listed in Table 1. 

To obtain these functions using the proposed method,  we used their representations in the form 

�9 2 2 �9 A03 + AI3Ia + Aa3I:~ ' A l l . . ~ A l l  = A ~  A a a ~ , A 3 3 =  2 2 
(3.4) 

�9 2 2 * 2 2 A,3 A13 = a~ + A I J ,  + a l j 1 ,  a2 a2 = A ~ + a J2 + 

(Akii and A~ are unknown constants). 
Figure 3 (kll = 1, k33 = 1, k2 = 0.25, k13 = 5, and k31 = 1) shows graphs of the functions (3.4) 

and the corresponding graphs of the initial functions (3.1). In Fig. 3 and the other figures, Dii = k i iAi i /A~ 
�9 . .  * 0 Dij = k , j A i i / A n  (kii are scaling factors which are chosen so as to show parameters differing in magnitude 

in one graph), curves 1-5 correspond to the functions Dl l ,  D33, D2, D13, and Dal, and curves 6-10 to the 
functions D~I, D'33, D~, D'13, and D~I 

As eij ~ 0, we have 4A~ = 1.0736 �9 105 MPa, 4A~ = 1.08.104 MPa, 4A~ = 5.4246- 104 MPa, 
and A ~ = 3.014.104 MPa. These values coincide with sufficient accuracy with those specified in (3.1) and 
(3.3). The results obtained show that  for the tested material (3.1) with weak anisotropy (3.3) and idealized 
experiments, formulas (3.4) can be used with sufficient accuracy over the entire range of deformation. 

For strong anisotropy, the following values were assumed in relations (3.1): 

B1 = 105MPa, B 3 =  104MPa, tq2 =0 .01 ,  B 2 = 3 . 1 0 3 M P a ,  
(3.5) 

a = 1 0  -3, al = 2 - 1 0  -2 , b = 0 . 1 .  

The experimental data  given in Table 2 were used for m = 1 , . . . ,  10. The  values of Ai* j obtained from 
(3.4) are presented in Fig. 4 (kH = 1, k33 = 10, ks = 1, k13 = 20, and k31 = 40). 

4. Use of approximation function (3.4) over the entire deformation range leads, as a rule, to discrepancy 
between Ai 0. and the corresponding linear-elastic constants for small strains. This is due to the fact that  the 
stress-strain curve is approximated using the condition of minimum mean-square residual over the entire range 
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of variation of the arguments. If it is necessary that the linear elastic characteristics coincide with values of 
Ai ~ for zero arguments, the following approach can be proposed. First, the linear-elastic characteristics Aij(e ) 
are determined for e!k~ =~ 0. Then, system (2.7)subject to the condition Ai ~ = Aq(~)is transformed. 

Figure 5 (kll = 1, k33 = 10, k2 = 5, k13 = 20, and k31 = 40) shows the calculation results that begin 
to deviate considerably from exact results as eli increase. 

An analysis of these and the other results obtained (Figs. 3-5) shows that use of power series (3.4) 
for the entire range of argument variation is justified for weak anisotropy and smoothly varying functions 
Aij. However, the approximation by higher-order polynomials leads to an ill-conditioned matrix B1 and 
oscillations of approximation functions. Therefore, for materials with strong anisotropy, one should either 
change the method, of determining stiffness characteristics or use other systems of functions (for example, 
spline functions). In the first method, it is possible to improve the method of determining Aij by a double 
approximation of the unknown functions. The essence of this method is as follows. We divide the interval 
of variation of r into sul~intervals A((k) in which the unknown functions are approximated by low-order 
polynomials. Writing the equations of equilibrium (2.7) only for the points lying in this interval, we can find 
the functions Ai~. In the entire interval of variation of r we obtain a piecewise-continuous function. Having 

the values of these functions in the middle of the intervals A((k), we can perform a second approximation of 
these functions by, for example, spline functions and obtain continuous functions Ai~*. It is expedient here to 
use approximation methods that not only minimize the deviation of Ai*j*. from Ai~ but also limit the curvature 
of Ai~*. 

The proposed double approximation method was realized in an automatic experimental-data processing 
system. Figure 6 (kll = 1, k33 = 10, k2 = 1, k13 = 20, and k31 = 40) shows the calculation results for material 
(3.1) with strong anisotropy (3.5) from experiment Nos. 2, 4, and 7 (see Table 2) for three equal subintervals. 
The results exhibit good agreement between the approximations obtained and functions (3.1). 

5. To analyze the effect of spread of experimental data on stiffness characteristics, the above test 
problems were used. A spread in input parameters was introduced in the initial data. The effect of these 

perturbations on the coefficients A! k-) ,j was studied. An analysis of the numerical experiments leads to the 
following conclusions: 

(1) the higher the degree of anisotropy (El~E2), the stronger the effect of the spread in the geometrical 

and loading parameters g~, SR, Sh, ~P, and ~q on A(k)33, A~ k), and z~z1A(k)', 
(2) the function All is the most stable against the perturbations, while the functions A13 and A31 are 

the least stable. 
We now analyze in more detail the effect of spread of experimental data on the stiffness characteristics 
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TABLE 2 

Experiment Winding _(k) _(k) 
number angle +~o, deg cn'm e22'm 

1 
2 
3 
4 
5 
6 
7 

44 
30 
25 
20 
15 
10 
5 

0.0005m 
0.0005m 
0.0005m 
0.0005m 
0.0005m 
0.0005m 
0.0005m 

TABLE 3 

Experiment Winding ilk) _(k) 
number angle +% deg ~H,m e22,m 

0.00035m 1 
0.00030m 2 
0.00025ra 
0.00020m 3 
0.00015ra 4 
0.00010m 5 
0.00005m 

35 

55 

65 

70 

25 

-0.0002m 

-0.0003ra 

-0.0003m 

-0.0002m 

-0.000Ira 

0.0004m 

0.0002m 

0.0004m 

0.0005m 

0.0003m 

Dq, D~/" v 6 

0.8 - / ~  

0 . 2 ~  
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Fig. 6 

of a composite material for the problem of determining linear-elastic constants for the constitutive law 

o-ll = 4All (0)e l l  + 4A13(0)e22, o "2z = 4Ala(0)ell +4A33(0)e22, o "12 = 2Gx2e12 (5.1) 

where 4Al1(0) = 104 MPa, 4A33(0) = 5.102 MPa, 4A13(0) = 102 MPa, and G12 = 300 MPa. 
Table 3 lists the calculated experimental values of strains and external forces for ra = 1 , . . . ,  10. 
Calculations show that,  as in [4], a small spread in the initial data (a few percent) can lead to large 

variations in values of Poisson's ratio u12 and even to a change of sign. 
Table 4 gives the changes in the stiffnesses of CM versus the measurement error for the winding angle 

in one of the experiments. Exact values of the stiffness characteristics are listed in the first row. The second, 
third, and fourth rows give, respectively, the results for experiment No. 1, in which an angle of 26 ~ was used 
in place of an angle of 25 ~ , the results for experiment No. 5, in which an angle of 73 ~ was used, and the results 
for the case of errors (A~pl = - 1  ~ and (A~5 = 3 ~ in experiment Nos. 1 and 5. It is seen from Table 4 that 
the quantities A~ and A ~ vary only slightly, while the variation of A~ is more pronounced, and the variation 
of A~ is considerable. 

We now consider the effect of measurement errors for ell,  e22, &ix, and b 22 by varying E1 or E2 by 10 
or 20% in preparing initial data  in one experiment. The calculation results are shown in Table 5. Row 1 gives 
the elastic characteristics for the case where a 20% error for E2 was introduced in preparing initial data for 
experiment No. 1 (T = 25~ and row 2 gives that for experiment No. 5 (~2 = 700) �9 The results presented in 
rows 3 and 4 correspond to the case where a 10% error for E1 was introduced in preparing initial data for 
experiment Nos. 1 (4 = 25~ and 5 (4 = 70~ respectively. 

An analysis of Table 5 shows that the effect of perturbations in experimental data for ~ll, e22, ~.ll 
and ~22 on Ai~ is similar to the effect of perturbations for angle ~0. 
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10,000 

TABLE 4 

4A~, I 4A~3 [ 4A~3 I 

GPa 

10,000 100 500 
9964 -20 470.4 
9956 298.6 511.6 

414 547.2 

Ao 

300 
296 
315.5 

319.2 

Measurement error 

of winding angle qol 

A~p 1 = 1 ~ 
A~Os = 3 ~ 

{ A~I = -1 ~ 
A~s 3 ~ 

TABLE 5 

4A~l I 4A~3 ] 

GPa 

10056 133.16 
10052 97.04 
9936 -35.2 
9976 -23.3 

4Ao 3 ] A0 

546.4 
557.2 
446 
449.6 

TABLE 6 

Winding angle :t:~o, 

deg 

300.2 35 
293.1 55 
295.2 65 
295.9 70 

E2, GPa 

calculation 

6.96 
20.8 
43.9 
58.7 

experiment 

7.8 
15.8 
40 
50 

The significant effect of measurement errors on the values of A~ A~ and A ~ is caused by the fact that 
the desired vector X = 0 0 {An,  A13 , A~ A~ t contains components that can differ from one another by several 
orders. In our case, A~ is the maximum element. Therefore, an insignificant variation of A~ in the equations 
of equilibrium can be compensated only by considerable variations of A~ A~ and A ~ Let the initial data 
differ from statistically exact values by the quantity 5 = Ab, where b is the vector of the initial exact data. If 
the system of equations is well conditioned with respect to the vector X ,  the deviation of the vector X from 
the exact value will be on the same order: IlzXXll -- kllSII and k ~ 1. However, since the difference between the 
values of components of the vector X is large (about two orders for UCM), the variation of small components 
will be very significant. Suppose, for example, that )(2 ~ X1 �9 100 and IlzXXll ~ 0.05 (5%). Assuming that 
Ilax211 ~ Ilaxll, we have IIAX2II ~ 112211. Thus, even small deviations of initial data from exact values can 
lead to considerable variations of )(2. 

6. The method described above was employed in processing concrete experiments performed on a setup 
which was designed and manufactured at the Kazan' State Architect-Building Academy to investigate the 
mechanical properties of fibrous composites on tubular specimens (cylindrical shells) [6, 7]. The setup was 
supplied with an automated strain-measurement and experimental-data-processing system. The operation of 
the system involves three stages. In the first stage, longitudinal and circumferential stresses and strains in 
tubular specimens are calculated using indications of strain and force gauges. In the second stage, the results 
for specimens of one family (the same winding angles and the same loading paths) are averaged, and the 
required dependences for each series of tested specimens are approximated and smoothed by means of spline 
functions. In the third stage, the loading parameter is chosen and functions (2.8) approximating the stiffness 
characteristics Aij are determined. 

The experimental-data-processing system with a complete set of service programs, including graphic 
programs, is realized on a PC. Experimental data for internal pressure, winding angles of +T  = 35, 55, 65, 
and 70 ~ and thicknesses of 1.5-2 mm were used. Evidently, over a wide range of deformation, the graphs 
plotted by the deformation results are linear in the component ~22, which was used as the loading parameter. 
Therefore, the linear-elastic characteristics 4A~ = 98.84 GPa, 4A~ = A~ = 1.35 GPa, 4A~ = 3.100 GPa. 

0 0 0 0 and A ~ = 3.10 GPa, and also the technical constants u12 = A13/Al l  = 0.0137, u21 = Ala/Aa3 = 0.435, 
E1 = 4A~ - u12u21) = 98.25 GPa, E2 = 4A~ - u12u21) = 3.08 GPa, and G = A ~ = 3.10 GPa were 
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determined. 
To estimate the results indirectly, the stiffness characteristics of the shells/~2 = ~22/~22 were found 

from the experimental data and also by calculating Ai ~ from the relations [8] 

/~2 = 4 i i 3 3 ( 1  - ~1~21), 
4All = 4A~ cos 4~o -~- 4A~ sin 4~ + 2(4A03 + 2A0) sin 2T.co s 2~o ' 

4,433 = 4a~ sin 4~ + 4A03 cos 4~ 2 + 2(4A~ + 2A~) sin 2~o- cos 2% 

4~i13 = 4A~ + [4a~ + 4A~ 2(4A~ + 2A~)] sin 2~ �9 cos2% 

~12 ~--- ~Z~I3/AII, /~21 : A13 / f ]33 .  

The results of comparison are given in Table 6. 
Thus, the proposed method makes it possible to determine the stiffness characteristics of UCM by 

processing data of tests on thin-walled structural members made of this UCM. The difference between the 
calculation results (obtained by the above method) and experimental results does not exceed 25%. 
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